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Abstract— In this paper, a Fault-Tolerant control of 2 DOF 
Helicopter (TRMS System) Based on H∞ is presented. In 
particular, the introductory part of the paper presents a Fault-
Tolerant Control (FTC), the first part of this paper presents a 
description of the mathematical model of TRMS, and the last 
part of the paper presented and a polytypic Unknown Input 
Observer (UIO) is synthesized using equalities and LMIs. This 
UIO is used to observe the faults and then compensate them, in 
this part the shown how to design a fault-tolerant control 
strategy for this particular class of non-linear systems. 
 
Keywords— Helicopter model; HHHH∞∞∞∞ control; UIO; state feedback 
control; MM; FTC.  

I. INTRODUCTION 

Fault-Tolerant Control (FTC) is a relatively new idea that 
makes possible to develop a control feedback that allows 
keeping the required system performance in the case of faults 
[1]. The control strategy can be perceived fault tolerant when 
there is an adaptation mechanism that changes the control law 
in the case of faults. Another solution is to use hardware 
redundancy in sensors and/or actuators. In general, FTC 
systems are classified into two distinct classes [2]: passive and 
active. In passive FTC [3] [4], controllers are designed to be 
robust against a set of presumed faults, therefore there is no 
need for fault detection. In the contrast to passive ones, active 
FTC schemes, react to system components faults actively by 
reconfiguring control actions, and by doing so the system 
stability and acceptable performance is maintained. 

Due to the complicated nonlinearity and the high coupling 
effect between two propellers, the control problem of the 
(TRMS) has been considered as a challenging research topic 
[5]. Moreover, the control of the TRMS has gained a lot of 
attention because the dynamics of the TRMS and a helicopter 
are similar in certain aspects [6], [7]. A multivariable 
nonlinear H∞ controller is designed in [8] for the angle 
control of the TRMS. The remainder of this paper is organized 

as follows. The model of the TRMS is described in Section II. 
The FTC strategy is designed in Section III. Section IV 
presents the simulation results to demonstrate the 
effectiveness of the FTC Controller. Concluding remarks are 
provided in Section VI. 

II. MODEL DESCRIPTION OF THE TRMS 

Similar to most flight vehicles, the helicopter consists of 
several elastic parts such as rotor, engine and control surfaces. 
The nonlinear aerodynamic forces and gravity act on the 
vehicle, and flexible structures increase complexity and make 
a realistic analysis difficult. For control purpose, it is 
necessary to find a representative model that shows the same 
dynamic characteristics as the real aircraft [9]. The behaviour 
of a nonlinear TRMS, (shown in Fig.1), in certain aspects 
resembles that of a helicopter. It can be well perceived as a 
static test rig for an air vehicle with formidable control 
challenges. 

 
Fig.1 The twin rotor multi-input multi-output system (TRMS) [10] 
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This TRMS consists of a beam pivoted on its base in such a 
way that it can rotate freely in both its horizontal and vertical 
planes. There are two rotors (the main and tail rotors), driven 
by DC motors, at each end of the beam. If necessary, either or 
both axes of rotation can be locked by means of two locking 
screws provided for physically restricting the horizontal or 
vertical plane rotation. Thus, the system permits both 1 and 2 
degree-of-freedom (DOF) experiments.  

The two rotors are controlled by variable speed electric 
motors enabling the helicopter to rotate in a vertical and 
horizontal plane (pitch and yaw). The mathematical model of 
the TRMS is developed under following assumptions. 

• The dynamics of the propeller subsystem can be 
described by first-order differential equations. 

• The friction in the system is of the viscous type. 
• The propeller – air subsystem could be described in                

accordance with the postulates of the flow theory. 

The mechanical system of TRMS is simplified using a 
four point-mass system shown in Fig. 2. 

 
Fig.2 Simplified four point-mass systems 
 

The parameters in the simplified four point-mass system 
are ���  is the return torque corresponding to the force of 
gravity, ��� is the moment of a aerodynamic force, ��� is the 
moment of a centrifugal forces, ��� is a Moment of friction, 
m
� is the mass of the DC motor within the main rotor, m
 is 
the mass of the main part of the beam, m�� is the mass of the 
DC motor within tail rotor, m� is the mass of the tail part of 
the beam, m��  is the mass of the counter weight, m�  is the 
mass of the counter-weight beam, m
� is the mass of the main 
shield, m�� is the mass of the tail shield, l
 is the length of the 
main part of the beam, l� is the length of the tail part of the 
beam, l� is the length of the counter-weight beam, l�� is the 
distance between the counter-weight and joint, and g is the 
gravitational acceleration.  

The driving torqueses are produced by the propellers, and 
the rotation can be described in principle as the motion of a 

pendulum. We can write the equations describing this motion 
as follows. 

A. The main rotor model 
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( )mvfmv FSlM ω=2               (4) 

The angular velocity �� of main propeller is a nonlinear 
function of a rotation angle of the DC motor describing by: 
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Also, the propulsive force F� moving the joined beam in 
the vertical direction is describing by a nonlinear function of 
the angular velocity ω
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The model of the motor-propeller dynamics is obtained 
by substituting the nonlinear system by a serial connection of 
a linear dynamics system. This can be expressed as: 

( )vvv
mr

vv uu
Tdt

du
+−= 1             (7) 

��  is the input voltage of the DC motor,mrT  is the time 

constant of the main rotor and ��� is the static gain DC motor. 

   

Fig 3 The relationship between the input voltage and the propulsive force for 
the main rotor 
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Where ω�  is the angular velocity of tail propeller, S�  the 
angular momentum in the vertical plane of the beam, J� the 
sum of inertia moments in the horizontal plane, J��  the 
moment of inertia in DC motor tail propeller subsystem, K� 
the Friction constant, and S� the balance scale. 

B. The tail rotor model 

Similarly, we can describe the motion of the beam in the 
horizontal plane (around the vertical axis) as shown in Fig.4. 
The driving torqueses are produces by the rotors and that the 
moment of inertia depends on the pitch angle of the beam. 

 

 
Fig 4 Torques around the vertical axis 
 
The parameters in the torques around vertical axis are ��� is 
the moment of an aerodynamic force, ���  is a Moment of 
friction. 
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The angular velocity �  of tail propeller is a nonlinear 
function of a rotation angle of the DC motor describing by: 

 
( )

hhhh

vvhhhhhht

uu

uuuu

83.379687.262

15.428369.1942020
2

345

+

−−+=ω
                (18) 

Also, the propulsive force !"  moving the joined beam in 
the Horizontal direction is describing by a nonlinear function 
of the angular velocity �  
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The model of the motor-propeller dynamics is obtained by 
substituting the nonlinear system by a serial connection of a 
linear dynamics system. This can be expressed as: 

( )hhh
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��  is the input voltage of the DC motor, # �  is the time 
constant of the tail rotor and � � is the static gain DC motor .    

 
Fig 5 The relationship between the input voltage and the propulsive force for 
the tail rotor 
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 Where $"  the angular momentum in the horizontal plane 
of the beam, %"  the sum of inertia moments in the vertical 
plane, %�� the moment of inertia in DC motor main propeller 
subsystem, �" the Friction constant, and $& the balance scale. 

The model in the state-space is: 
'( = *+,- + /+', 1- and ' = [,�, … , ,4]6  is the state vector 
of the system such as: 
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Y = [ ]hv αα ,                               (29) 

 
From (26), (27) and (28) we obtain the following state 
representation:  
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TABLE I 
THE PARAMETERS OF THE TRMS [10] 

Symbol Definition Value 
A Mechanical  related constant 0.0946875 kgm2 

B Mechanical  related constant 0.11046 kgm2 

C Mechanical  related constant 0.01986 kgm2 

D Mechanical  related constant 0.04988 kgm2 

E Mechanical  related constant 0.004745 kgm2 

F Mechanical  related constant 0.006230 kgm2 

H Mechanical  related constant 0.048210 kgm2 

$& Balanced scale 0.000843318 

%� Sum of inertia moments in the 
horizontal plane 

0.055448 kgm2 

%�� Moment of inertia in the DC-motor 
of main propeller 

0.000016543 kgm2 

% � Moment of inertia in the DC-motor 
of main propeller 

0.0000265 kgm2 

7� Length of the main part of the beam 0.24 m 

7  Length of the tail part of the beam 0.25 m 

#�� Time constant of the main rotor 1.432 sec 

# � Time constant of the tail rotor 0.3842 sec 

��� Static gain of the main DC-motor 1 

� � Static gain of the tail DC-motor 1 

�� Friction coefficient for the vertical 
axis 

0.0095 

�� Friction coefficient for the horizntal 
axis 

0.00545371 

g Gravitational acceleration 9.81 m/s2  

III.  FTC STRATEGY 

Consider a system represented by the Multi model: 
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 Where ,+8-9:;
 is the state vector, <+8-9:=  is the output 

vector and �+8-9:�
  is the input vector. >+8- is the vector of 

decision variables which can depend on the state of the 
outputs or inputs. Considering the system of equations (31), $ 
is a matrix of sequencing models varying as follows: 
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When fault actuators (as additive), the previous system is 
written as follows: 
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Where ?@ is the distribution matrix faults [11] [12]. 

A. Fault tolerant control in multi-model 

We consider a single output matrix A  for different 
operating points, the system (32) is written as follows: 
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Considering the additive representation actuators faults, the 
system (36) takes the following form: 
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Where ,&+8-9:; is the state vector, <&+8-9:=  is the 
output vector and �&+8-9:�  is the input vector. The state 
matrix of B th local model is C@9:;×;  the control matrix is 
E@9:;×�  and the output matrix is A9:=×; Distribution 
matrices faults are noted ?@9:;×F supposed full column rank, 
and *9:F

 represents the vector of faults.  

The term ∆'@9:;×�  a vector is dependent B th operating 
point, we assume that the matrices ?@ , ∀B ∈ {1, … , L}   i.e. less 
if * ≠ 0then ?@* ≠ 0, In addition, it should be noted that in a 
conventional manner for detectability of faults. The objective 
of the method is to synthesize a control law �&+8-  which 
cancels the effect of defects on the system Closed loop 
converges asymptotically and state ,&+8- to state ,+8-  despite 
the presence of faults. The control law is synthesized as 
follows [11]: 
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Where *P+8-  represents an estimate of the fault. The 
purpose of the first term of the command $@*P+8-  is the 

estimate of default, the purpose of the term ��,@ Q,+8- −
,&+8-S  is to annul the estimation error and �+8- defines the 
nominal command. Replacing the state vectors ,+8- and ,&+8- 
by their estimated ,T+8-  and ,T&+8-  in equation (37) the 
application of this technique is equivalent to: 

• Determine *P+8-. 
• Calculate the gains ��,@ , ∀B 9{1, … , L}  such that the 

closed loop system is stable. 

B. Estimation des défauts 

Actuators faults represented by the vector *+8- in equation 
(37) can be considered as unknown inputs. This allows us to 
use the theory of unknown input observers for UIO estimate. 
And state estimation in the presence of a fault condition tends 
to itself. Then replaced  ,&+8- by its estimate ,T&+8- in equation 
(37) and we obtain: 
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The expression of the fault estimation error is: 
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C. Synthesis of the fault tolerant control 

The synthetic methodology of proposed FTC command was 
built around the following assumptions: 

• The pairs +C@ , A- are observable. 
• The pairs +C@, E- are controllable. 

The first assumption is necessary for calculating the gains of 
multiple observers, whereas the second allows the calculation 
of the command gains FTC. Thus it is possible to calculate the 
matrices ��,@ et ��,@ . 
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After several simulations choice is focused on the 
following parameters: 

U = 2 et W = 700  

We obtain the following matrix gain for the first three 
points operation: 
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The matrices of of multi-observer gains are given by: 
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IV.  SIMULATION RESULTS 

The proposed faults tolerant control scheme presented in 
this paper was tested on a model of helicopter, which is called 
a twin rotor MIMO system Fig. 5.  
 
 
 
 
 
 

Fig. 5 faults actuators in the control loop 
 

The values of the main mechanical parameters of this 
system are listed in Table I. in order to show the effectiveness 
of the proposed approach. Four simulations are performed. 
The system was simulated selecting an intermittent fault is 
triggered at the time 25s, and it is estimated simultaneously in 
the multiple observer unknown input. Fig. 8 and Fig. 9 show 
the fault and its estimate. 

A. nominal control by state feedback with FTC 

 
Fig. 6 the vertical and horizontal angles tracking 
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Fig. 7 system commands 

 

Fig. 8 Defaults: f+t- and the estimated default fP+t- 

B. nominal control [\ with FTC 
 

 
Fig. 9 the vertical and horizontal angles tracking 
 

 
Fig. 10 system commands 

 
Fig. 11 Defaults: f+t- and the estimated default fP+t- 

 
The simulation results in the figures (6-11) show that 

estimates of the state variables are very satisfactory despite 
the presence of actuator fault which can calculate the FTC 
control law to reduce the effect of failure on the system. We 
note that the outputs ]� and ]� correctly follow the variations 
references. 

V. CONCLUSIONS 

In this paper, we presented stabilizing control laws 
synthesis by H∞ and state feedback. Firstly, we start by the 
development of the dynamic model of the TRMS taking into 
account the different physics phenomena. After we are 
interested to propose the FTC controller based on H∞, this 
controller is designed such that it can stabilize the faulty plant 
using H∞ theory and LMIs; this method was suitable for 
partial actuator faults. Simulation results also validate that the 
presented FTC has a satisfactory tracking performance and is 
robust to the external disturbances. 
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